Culhane Lab
  • Home
  • Research
    • Overview
    • eHealth Hub for Cancer
    • GDI - Genomic Data Infrastructure
    • Single-Cell Methods
    • Bioconductor
    • Kidney Cancer
  • People
  • Collaborate
  • Publications & News
    • Publications
    • Talks
    • News
  • Software
  • Join Us
  1. Software
  • Report a Bug
  • People
    • People
      • Alumni
        • Test
      • Mentoring
        • Dr. Eanna Fennell
        • Lauren L Hsu
        • Dr Olywn Mahon
      • PI
        • Prof Aedin Culhane
      • Team
        • Mr Ahmad Alkhan
        • Alice Abend
        • Mr Brendan Reardon
        • Dr Maria Doyle
        • Mr. Michael lynch
        • Monica Valecha
  • News
    • News
      • RTE Brainstorm Article
      • LimerickPost

On this page

  • Our Computational Tools
    • Workshops & Training Materials

Software

Our Computational Tools

We develop open-source software for genomic data analysis, with a focus on cancer research and single-cell methods.

Corral

Single-cell RNA-seq dimension reduction, batch integration, and visualization with correspondence analysis.

Bioconductor GitHub

Publications

  • (Hsu and Culhane, 2023)
  • (Lê Cao et al., 2021)
  • (Hsu and Culhane, 2020)

MOGSA

Multi-Omics Gene Set Analysis: Integrative analysis of multiple experimental and molecular data types.

Bioconductor GitHub

Publications

  • (Meng et al., 2016)
  • (Meng et al., 2019)
  • (Meng et al., 2014)
  • (Meng and Culhane, 2016)
  • (Lê Cao et al., 2021)

iBBiG

Iterative Binary Bi-clustering of Gene Sets for biclustering and pattern discovery in gene expression data.

Bioconductor GitHub

Publications

  • (Gusenleitner et al., 2012)

made4

Multivariate Analysis of Microarray Data using ADE4 for visualization and analysis of microarray data.

Bioconductor GitHub

Publications

  • (Culhane et al., 2005)

Workshops & Training Materials

Hitchhiker’s Guide to PCA

A comprehensive tutorial on Principal Component Analysis for genomic data.

View Workshop

Quick Guide to scRNAseq

Introduction to single-cell RNA sequencing analysis methods.

View Workshop

BIRSBiointegration Hackathon

Datasets and code from our multi-omics integration hackathon.

Explore Hackathon

References

Culhane AC, Thioulouse J, Perriere G, Higgins DG. 2005. MADE4: an R package for multivariate analysis of gene expression data. Bioinformatics 21:2789–2790. doi:10.1093/bioinformatics/bti394
Gusenleitner D, Howe EA, Bentink S, Quackenbush J, Culhane AC. 2012. iBBiG: Iterative binary bi-clustering of gene sets. Bioinformatics (Oxford, England) 28:2484–92. doi:10.1093/bioinformatics/bts438
Hsu LL, Culhane AC. 2023. Correspondence analysis for dimension reduction, batch integration, and visualization of single-cell RNA-seq data. Scientific Reports 13. doi:10.1038/s41598-022-26434-1
Hsu LL, Culhane AC. 2020. Impact of Data Preprocessing on Integrative Matrix Factorization of Single Cell Data. Frontiers in Oncology 10:973. doi:10.3389/fonc.2020.00973
Lê Cao K-A, Abadi AJ, Davis-Marcisak EF, Hsu L, Arora A, Coullomb A, Deshpande A, Feng Y, Jeganathan P, Loth M, Meng C, Mu W, Pancaldi V, Sankaran K, Righelli D, Singh A, Sodicoff JS, Stein-O’Brien GL, Subramanian A, Welch JD, You Y, Argelaguet R, Carey VJ, Dries R, Greene CS, Holmes S, Love MI, Ritchie ME, Yuan G-C, Culhane AC, Fertig E. 2021. Community-wide hackathons to identify central themes in single-cell multi-omics. Genome Biology 22. doi:10.1186/s13059-021-02433-9
Meng C, Basunia A, Peters B, Gholami AM, Kuster B, Culhane AC. 2019. MOGSA: Integrative Single Sample Gene-set Analysis of Multiple Omics Data. Molecular & Cellular Proteomics 18:S153–S168. doi:10.1074/mcp.tir118.001251
Meng C, Culhane A. 2016. Integrative exploratory analysis of two or more genomic datasets. Springer New York. pp. 19–38. doi:10.1007/978-1-4939-3578-9_2
Meng C, Kuster B, Culhane AC, Gholami AM. 2014. A multivariate approach to the integration of multi-omics datasets. BMC Bioinformatics 15. doi:10.1186/1471-2105-15-162
Meng C, Zeleznik OA, Thallinger GG, Kuster B, Gholami AM, Culhane AC. 2016. Dimension reduction techniques for the integrative analysis of multi-omics data. Briefings in Bioinformatics 17:628–641. doi:10.1093/bib/bbv108
  • © 2023 Culhane Lab | University of Limerick

Privacy Policy | Terms of Use