Chittenden, Thomas W., Jane Pak, Renee Rubio, Hailing Cheng, Kristina Holton, Niall Prendergast, Vladimir Glinskii, et al. 2010.
“Therapeutic Implications of GIPC1 Silencing in Cancer.” Edited by Pawel Michalak.
PLoS ONE 5 (12): e15581.
https://doi.org/10.1371/journal.pone.0015581.
Culhane, A. C., M. S. Schroder, R. Sultana, S. C. Picard, E. N. Martinelli, C. Kelly, B. Haibe-Kains, et al. 2011.
“GeneSigDB: A Manually Curated Database and Resource for Analysis of Gene Expression Signatures.” Nucleic Acids Research 40 (D1): D1060–66.
https://doi.org/10.1093/nar/gkr901.
Gusenleitner, Daniel, Eleanor A Howe, Stefan Bentink, John Quackenbush, and Aedín C Culhane. 2012.
“iBBiG: Iterative Binary Bi-Clustering of Gene Sets.” Bioinformatics (Oxford, England) 28 (19): 2484–92.
https://doi.org/10.1093/bioinformatics/bts438.
Hsu, Lauren L., and Aedin C. Culhane. 2020.
“Impact of Data Preprocessing on Integrative Matrix Factorization of Single Cell Data.” Frontiers in Oncology 10: 973.
https://doi.org/10.3389/fonc.2020.00973.
Hsu, Lauren L., and Aedín C. Culhane. 2023.
“Correspondence Analysis for Dimension Reduction, Batch Integration, and Visualization of Single-Cell RNA-Seq Data.” Scientific Reports 13 (1).
https://doi.org/10.1038/s41598-022-26434-1.
Lê Cao, Kim-Anh, Al J. Abadi, Emily F. Davis-Marcisak, Lauren Hsu, Arshi Arora, Alexis Coullomb, Atul Deshpande, et al. 2021.
“Community-Wide Hackathons to Identify Central Themes in Single-Cell Multi-Omics.” Genome Biology 22 (1).
https://doi.org/10.1186/s13059-021-02433-9.
Meng, Chen, Azfar Basunia, Bjoern Peters, Amin Moghaddas Gholami, Bernhard Kuster, and Aedín C. Culhane. 2019.
“MOGSA: Integrative Single Sample Gene-Set Analysis of Multiple Omics Data.” Molecular & Cellular Proteomics 18 (8): S153–68.
https://doi.org/10.1074/mcp.tir118.001251.
Meng, Chen, and Aedin Culhane. 2016.
“Integrative Exploratory Analysis of Two or More Genomic Datasets.” In, 19–38. Springer New York.
https://doi.org/10.1007/978-1-4939-3578-9_2.
Meng, Chen, Bernhard Kuster, Aedín C Culhane, and Amin Moghaddas Gholami. 2014.
“A Multivariate Approach to the Integration of Multi-Omics Datasets.” BMC Bioinformatics 15 (1).
https://doi.org/10.1186/1471-2105-15-162.
Meng, Chen, Oana A. Zeleznik, Gerhard G. Thallinger, Bernhard Kuster, Amin M. Gholami, and Aedín C. Culhane. 2016.
“Dimension Reduction Techniques for the Integrative Analysis of Multi-Omics Data.” Briefings in Bioinformatics 17 (4): 628–41.
https://doi.org/10.1093/bib/bbv108.
Ramos, Marcel, Lucas Schiffer, Angela Re, Rimsha Azhar, Azfar Basunia, Carmen Rodriguez, Tiffany Chan, et al. 2017.
“Software for the Integration of Multiomics Experiments in Bioconductor.” Cancer Research 77 (21): e39–42.
https://doi.org/10.1158/0008-5472.can-17-0344.
Santagata, Sandro, Ankita Thakkar, Ayse Ergonul, Bin Wang, Terri Woo, Rong Hu, J. Chuck Harrell, et al. 2014.
“Taxonomy of Breast Cancer Based on Normal Cell Phenotype Predicts Outcome.” Journal of Clinical Investigation 124 (2): 859–70.
https://doi.org/10.1172/jci70941.
Schröder, Markus S., Daniel Gusenleitner, John Quackenbush, Aedín C. Culhane, and Benjamin Haibe-Kains. 2013.
“RamiGO: An R/Bioconductor Package Providing an AmiGO Visualize Interface.” Bioinformatics 29 (5): 666–68.
https://doi.org/10.1093/bioinformatics/bts708.
Schwede, Matthew, Dimitrios Spentzos, Stefan Bentink, Oliver Hofmann, Benjamin Haibe-Kains, David Harrington, John Quackenbush, and Aedín C. Culhane. 2013.
“Stem Cell-Like Gene Expression in Ovarian Cancer Predicts Type II Subtype and Prognosis.” Edited by Vincenzo Coppola.
PLoS ONE 8 (3): e57799.
https://doi.org/10.1371/journal.pone.0057799.
Schwede, Matthew, Levi Waldron, Samuel C. Mok, Wei Wei, Azfar Basunia, Melissa A. Merritt, Constantine S. Mitsiades, et al. 2020.
“The Impact of Stroma Admixture on Molecular Subtypes and Prognostic Gene Signatures in Serous Ovarian Cancer.” Cancer Epidemiology, Biomarkers & Prevention 29 (2): 509–19.
https://doi.org/10.1158/1055-9965.epi-18-1359.
Wang, Zhigang C., Nicolai Juul Birkbak, Aedín C. Culhane, Ronny Drapkin, Aquila Fatima, Ruiyang Tian, Matthew Schwede, et al. 2012.
“Profiles of Genomic Instability in High-Grade Serous Ovarian Cancer Predict Treatment Outcome.” Clinical Cancer Research 18 (20): 5806–15.
https://doi.org/10.1158/1078-0432.ccr-12-0857.